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Abstract
Deep learning and symbolic learning are two fre-
quently employed methods in Sequential Recom-
mendation (SR). Recent neural-symbolic SR mod-
els demonstrate their potential to enable SR to
be equipped with concurrent perception and cog-
nition capacities. However, neural-symbolic SR
remains a challenging problem due to open is-
sues like representing users and items in logi-
cal reasoning. In this paper, we combine the
Deep Neural Network (DNN) SR models with
logical reasoning and propose a general frame-
work named Sequential Recommendation with
Probabilistic Logical Reasoning (short for SR-
PLR). This framework allows SR-PLR to benefit
from both similarity matching and logical reason-
ing by disentangling feature embedding and logic
embedding in the DNN and probabilistic logic net-
work. To better capture the uncertainty and evo-
lution of user tastes, SR-PLR embeds users and
items with a probabilistic method and conducts
probabilistic logical reasoning on users’ interac-
tion patterns. Then the feature and logic repre-
sentations learned from the DNN and logic net-
work are concatenated to make the prediction.
Finally, experiments on various sequential rec-
ommendation models demonstrate the effective-
ness of the SR-PLR. Our code is available at
https://github.com/Huanhuaneryuan/SR-PLR.

1 Introduction
Sequential Recommendation (SR) has been proposed to solve
information overload in a variety of real-world applications,
including e-commerce, advertising, and other areas. Mean-
while, Deep Neural Network (DNN) is widely used in SR
to capture the sequential characteristics of user behaviors
and generate accurate recommendations [Hidasi et al., 2016;
Kang and McAuley, 2018]. Recent developments in neural-
symbolic methods [Shi et al., 2020; Shi et al., 2022; Zhang
et al., 2022] have demonstrated competitive performance
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against DNN-based SR models, thus boosting significant re-
search interest in combining DNN with symbolic learning.

Deep learning and symbolic learning are two different ap-
proaches frequently used in the field of artificial intelligence.
The former is especially a central concern in current research
with the resurgence data-driven learning paradigm. Without
explicit common sense knowledge and cognitive reasoning,
these data-hungry strategies are typically difficult to general-
ize [Marcus, 2020]. In contrast, symbolic learning involves
the use of logical operators (e.g., AND (∧), OR (∨) and NOT
(¬)) and human-interpretable representations of data (e.g.,
words or numbers) to perform language understanding or log-
ical reasoning tasks. As for SR, DNN-based works (such
as SASRec [Kang and McAuley, 2018], etc.) sort to learn-
ing expressive representations of items and generating rec-
ommendations by calculating the similarity between the rep-
resentations of historical interactions and target items. How-
ever, rather than only calculating the similarity score, sym-
bolic learning-based models focus more on making predic-
tions based on the users’ cognitive reasoning procedure [Chen
et al., 2021]. For example, after buying a laptop, a user may
prefer to purchase a keyboard rather than a similar laptop.

At the same time, DNN and symbolic learning are com-
plementary, and fusing them properly could combine the
strengths of both approaches, thus improving the perfor-
mance of deep learning models [Shi et al., 2022]. For ex-
ample, symbolic learning can provide a more flexible logi-
cal structure to latent features that are learned from DNN.
Additionally, the introduction of deep learning enables end-
to-end training of the symbolic learning and reasoning pro-
cess. However, neural-symbolic learning for SR remains a
challenging problem with open issues in the following as-
pects. First, the most recent models for logical reasoning are
embedding-based. The feature description and logical repre-
sentation are coupled in the same framework, which makes it
hard to distinguish which latent feature contributes to feature
representation or logical reasoning [Shi et al., 2020]. And
intuitively, the representations that work for feature descrip-
tion and logical reasoning in the model may influence the rec-
ommendation differently. Second, most of them assume user
preferences are static and embed users and items in a deter-
ministic manner, but ignore that the user’s tastes are full of
uncertainty and evolving by nature, which incurs inaccurate
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recommendations [Zhao et al., 2021a].
In this paper, we enhance the classical DNN-based mod-

els with logical reasoning and propose a general frame-
work named Sequential Recommendation with Probabilistic
Logical Reasoning (short for SR-PLR). In our framework,
feature embedding and logic embedding are disentangled in
disparate networks, which enables SR-PLR to be benefited
from both similarity matching and logical reasoning. Specif-
ically, for the feature part, we take DNN-based SR methods
(such as SASRec, GRU4Rec, etc.) as the backbone to learn
the powerful latent representations of sequences. For the log-
ical part, two transfer matrices are mentioned to convert the
original feature embedding into several independent Beta dis-
tributions to represent historical items. Then two closed prob-
abilistic logical operators (i.e., AND, NOT) are conducted on
these distributions to infer the target items’ distribution with
the KL-divergence (Kullback-Leibler). Finally, the feature
representation obtained from traditional SR methods is con-
catenated with the logical representation sampled from the
output Beta distribution to make the prediction.

In a nutshell, the contributions of our paper can be con-
cluded as follows:

• We propose a general framework for sequential recom-
mendation that combines the deep learning method with
symbolic learning.

• We develop a probabilistic embedding method for rec-
ommendation, and conduct probabilistic logical reason-
ing on users’ interaction behaviors for better capturing
the uncertainty and evolution of user tastes.

• We successfully implement our framework to traditional
and newly released DNN SR models, and our experi-
mental results show that the performance of all these
models can be improved with the help of probabilistic
logical reasoning.

2 Related Work
There are multiple topics related to our SR-PLR. Here, we
first present some sequential recommendation works, and
then introduce some neural-symbolic, probabilistic embed-
ding recommendation models in this section.

2.1 Sequential Recommendation
In early works, Markov chains, Recurrent Neural Network
(RNN), and Convolutional Neural Network (CNN) are com-
monly used in SR. For example, FPMC [Rendle et al.,
2010] relies on modeling item-item transition relationships
and predicts the next item with the last interaction of a user.
GRU4Rec [Hidasi et al., 2016] captures the sequential pat-
terns with a multi-layer Gate Recurrent Unit (GRU) structure
and NARM [Li et al., 2017] further imports the item-level
attention mechanism into GRU to measure the importance
of different items. Simultaneously, Caser [Tang and Wang,
2018] explores the application of CNN for sequential recom-
mendation, which uses two types of convolutional filters to
extract the information hidden in the users’ sequences. Re-
cently, SASRec [Kang and McAuley, 2018] introduces self-
attention into recommendation systems and achieves great

success. Beyond that, MLP4Rec [Ma et al., 2019] simply
stacks multiple MLP layers to model users’ dynamic pref-
erences. S3Rec [Zhou et al., 2020] and DuoRec [Qiu et
al., 2022] boost the performance with self-supervised signals.
Different from these models, we aim to integrate symbolic
learning into these DNN models and endow SR with cogni-
tion ability.

2.2 Neural-symbolic Recommendation
Recent neural-symbolic recommendation models can be di-
vided into two categories. One type of neural-symbolic
model (e.g., ENRL [Shi et al., 2022] and NS-ICF [Zhang et
al., 2022]) aims to build an explainable recommender system
with the aid of symbolic learning. They focus on learning in-
terpretable recommendation rules on user and item attributes,
and then output how these predictions are generated. Another
type (e.g., LINN [Shi et al., 2020], NCR-E [Chen et al., 2021]
and GCR [Chen et al., 2022]) explores to represent logical
operators with the multilayer perceptron and conducts logical
reasoning with the guide of several logical regularizers. In
this way, sequential behavior can be presented as a logical ex-
pression, so that conducting logical reasoning and prediction
in a continuous space. However, different from these methods
to conduct reasoning with solely embedding, we disentangle
feature and logic embedding in different networks, and then
combine feature learning and symbolic learning in a unified
framework.

2.3 Probabilistic Embedding for Recommendation
Probability distributions are widely used in representing all
the uncertain unobserved quantities in a model (including
structural, parametric, and noise-related) and how they re-
late to the data [Ghahramani, 2015]. There are several works
mentioned to model the users and items in probabilistic em-
beddings. For example, PMLAM [Ma et al., 2020] and
DDN [Zheng et al., 2019] represents users and items as learn-
able Gaussian distributions, and uses Wasserstein distance to
estimate whether the user will buy the target item or not.
DT4SR [Fan et al., 2021] learns the mean and covariance
with different Transformers, which performs effectively for
cold-start recommendation, and STOSA [Fan et al., 2022]
further proposes novel Wasserstein self-attention based on
Gaussian distributions. Furthermore, some works use the
deep generative model in SR with probabilistic methods. For
example, VSAN [Zhao et al., 2021a] fuse Variational Au-
toEncoders (VAE) with self-attention networks to capture the
long and local dependencies in the behavior sequences. Dif-
ferent from these above probabilistic models, we embed users
and items as Beta distributions for not only capturing uncer-
tainty but also facilitating logical reasoning.

3 Formalization
Formally, let U and V be user and item sets. Given u’s
historical behaviors Vu = {v1, v2, · · · , vm} ⊆ V , the goal
of SRs is to predict the next item that u ∈ U will interact
with. For DNN SR models, they take Vu as input to predict
the most possible top-K items, which can be formulated as
vt = arg maxvi∈V P (vm+1 = vi | Vu), where vt represents
the target item of u.
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Figure 1: The framework of SR-PLR. v1, v2, · · · , vm are u’s historical items, vt is a target item and vi is their corresponding distributions.
vm+1 and v− represent the sampled items that the user does not interact with.

In this paper, we complement classical DNN with logical
reasoning. For our logic part, the sequential recommendation
task can be seen as a logical reasoning task. For example,
let V+

u ,V−u ⊆ Vu denote u’s clicked and unclicked item sets,
v1, v2 ∈ V+

u and v3 ∈ V−u , the logical formula v1∧v2∧(¬v3)
can be used to infer vt.

4 Methodology
The SR-PLR framework shown as Figure 1 consists of two
main parts: feature representation learning and probabilistic
logical reasoning. For the feature part, SR-PLR utilizes tra-
ditional DNNs (e.g., GRU4Rec, SASRec, etc.) as the feature
encoder to extract the feature representations of users’ behav-
ior sequences. For the logic part, SR-PLR conducts logical
reasoning with a probabilistic method, which will be fully
explained from three points: probabilistic logic embedding,
probabilistic logical operators and logical reasoning. More
details are illustrated in the following parts.

4.1 Feature Representation Learning
We first briefly introduce how to learn feature representations
in SR-PLR. Following the most widely used manner in SR
models, the backbone feature encoder used in our framework
contains two parts: the embedding layer and the feature en-
coder.

Embedding Layer
In our framework, ID information is all we need to build
the model, since side information (e.g., sex, category, etc.)

may be not always available in practice. Hence, we embed
the whole items’ IDs into the same latent space [Kang and
McAuley, 2018] and generate the ID item embedding matrix
M ∈ R|V|×d, where d is the embedding dimension. Given
the u’s interaction sequence, the embedding of Vu is initial-
ized to eu ∈ Rm×d and eu = {m1,m2, ...,mm}, where
mk ∈ Rd represents the item’s embedding at the position k
in the sequence.

Feature Encoder

Given the sequence embedding eu, a deep neural network
model (e.g., SASRec) represented as fθ(·) is utilized to learn
the representation of the sequence. The output representation
of feature encoder Hu

f ∈ Rd is calculated as Hu
f = fθ(e

u),
and chosen as the representation of u’s behavior sequence.

4.2 Probabilistic Logical Reasoning

As illustrated in the Introduction section, symbolic learning
could grant DNN models the capability of cognition. How-
ever, how to represent users/items and how to conduct logical
reasoning are still worth discussing.

Hence in this paper, we: (1) design a probabilistic logical
embedding method for the recommender system to represent
users/items in the logical space, (2) apply probabilistic logi-
cal operators on these probabilistic embeddings, and (3) get
the logical representations for the sequence by using logical
reasoning.
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Probabilistic Logical Embedding
Different from previous neural-symbolic works that treat the
same ID embeddings as both feature representation and log-
ical variable, two different types of embedding are used in
SR-PLR to describe features and conduct logical reasoning,
respectively.

Specifically, we leverage the transfer matrix to covert ID
embeddings into the logic space, and use multiple indepen-
dent Beta distributions to demonstrate items thus modeling
the uncertainty of user’s tastes. Where Beta distribution refers
to a continuous probability distribution defined on [0, 1],
and its Probability Density Function (PDF) is p[(α,β)](x) =

1
B(α,β)x

α−1(1 − x)β−1, where x ∈ [0, 1], shape parameters
α, β ∈ [0,∞], and B(α, β) is the beta function. Given ID
embeddings, we use two transfer matrices represented as Wα

and Wβ ∈ Rd×d to transfer M into two shape matrices α
and β ∈ Rm×d:

α = MWα,β = MWβ (1)
For vi, each dimension of vi = [(αi,βi)] =
[(αi,1, βi,1), (αi,2, βi,2), · · · , (αi,d, βi,d)] characterizes the
uncertainty by an independent Beta distribution instead of
a single value, and its PDF pvi(x) is denoted as P(vi) =
[p[(αi,1,βi,1)](x), p[(αi,2,βi,2)](x), · · · , p[(αi,d,βi,d)](x)]. Fol-
lowing BetaE [Ren and Leskovec, 2020], we clamp all el-
ements in α and β into (0, 109] after multiplying transfer
matrices. Note that items’ representations in SR-PLR are as-
sumed to follow the Beta distribution rather than the Gaus-
sian distribution because we aim to guarantee the probabilis-
tic logical operators on these Beta embeddings are closed.
More details will be illustrated in the next section.

Probabilistic Logical Operators
In this section, we define two probabilistic operators on the
Beta embedding space, which are called probabilistic nega-
tion operator (N ) and conjunction operator (C), respectively.
Note that since the disjunction operator can be implemented
using negation and conjunction with De Morgan’s laws [Ren
and Leskovec, 2020], only the aforementioned two operators
are discussed in our framework.

Probabilistic negation operator: For probabilistic nega-
tion operator, N (vi) is defined as the reciprocal of vi:

N (vi) = [(
1

αi,1
,

1

βi,1
), (

1

αi,2
,

1

βi,2
), · · · , ( 1

αi,d
,

1

βi,d
)] (2)

It can be seen that, different from [Shi et al., 2020] that relies
on logical regularizations,N naturally satisfiesN (N (vi)) =
vi. In addition, as shown in Figure 1, operator N can in-
herently reverse high probability density to low density and
vice versa [Ren and Leskovec, 2020], which enables N (vi)
to represent the dislikes item vi of users.

Probabilistic conjunction operator: Given a user’s be-
haviors Vu = {v1, v2, · · · , vm} and their embeddings v1 =
[(α1,β1)],v2 = [(α2,β2)], · · · ,vm = [(αm,βm)], we de-
fine the output of conjunction v = C({v1,v2, · · · ,vm}),
where C is probabilistic conjunction operator. Following [Ren
and Leskovec, 2020], v’s distributions can be represented as

v = [(

m∑
i=1

wi �αi,

m∑
i=1

wi � βi)] (3)

where
∑

and � are the element-wise summation and prod-
uct, respectively. wi ∈ Rd is a weight vector. Its j-th dimen-
sion wi,j satisfy Σmi=1wi,j = 1. In this way, the PDF of v is
calculated as the weighted product of Vu’ PDFs:

pv(x) =
∏

pw1
v1

(x)pw2
v2

(x) · · · pwm
vm

(x) (4)

where
∏

is the element-wise product. In SR-PLR, we adopt
the attention mechanism to learn the importance of different
items during training:

wi =
exp(MLP (αi ⊕ βi))∑
j exp(MLP (αj ⊕ βj))

(5)

where ⊕ represents concatenation operation, and MLP :
R2d → Rd is a multilayer perceptron taking the concatena-
tion of α and β as its input thus making our logical operators
can be learned end-to-end. Obviously, the defined conjunc-
tion operator satisfies the equation C({v1,v1, · · · ,v1}) =
v1 and does not need any logical regularization.

It should be pointed out that both operators are closed in the
Beta embedding space, which makes these operators could be
combined in arbitrary ways and prevents exponential compu-
tation [Ren and Leskovec, 2020].

Logical Reasoning
After defining logical embedding and operators, it is conve-
nient for us to conduct reasoning on historical items. For ex-
ample, given v1, v2 ∈ V+

u and v3 ∈ V−u , v1 ∧ v2 ∧ (¬v3) can
be represented as C({v1,v2,N (v3)}) to calculate the target
items’ distribution. Generally, for v1, v2, · · · , vm ∈ V+

u and
sampled negative item vm+1, vm+2, · · · , vn ∈ V−u , we apply
logical operators on them

vu = C({v1,v2, · · · ,vm,N (vm+1), · · · ,N (vn)}) (6)

As logical operators N and C are closed, vu is also a
Beta embedding to represent the user’s preference. Hence, by
measuring the KL-divergence distance between vu and target
item’s distribution vt, the reasoning result of logic network
can be obtained:

Dist(vu,vt) =

d∑
k=1

KL(Pk(vt),Pk(vu)) (7)

where Pk(vu) represents the k-th dimension of P(vu). To
this end, we utilize a pair-wise loss (e.g., Bayesian Person-
alized Ranking (BPR) [Rendle et al., 2009]) to optimize the
parameters of this logic network:

Ll = log(σ(Dist(vu,vt)−Dist(vu,v
−)) (8)

where v− is a embedding of v− ∈ V−u , and σ is the sigmoid
function.

4.3 Training and Prediction
To fuse DNN and logic network together, we are going to
concatenate the feature representation Hu

f with logical repre-
sentation Hu

l together to make the final prediction. The most
direct way to get logical representations is to take samples
from the distribution vu = [(αu,βu)]. However, the sam-
ple operation is not differentiable, which makes the process
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Datasets Users Items Ratings Avg. Len. Sparsity

Sports 35,598 18,357 296,337 8.3 99.95%
Toys 19,413 11,925 167,597 8.6 99.93%
Yelp 30,499 20,068 317,182 10.4 99.95%

Table 1: Statistics of datasets.

hard to be trained end-to-end. Hence, in our framework, we
choose the mean of distribution vu to represent the sequence:

Hu
l =

αu

αu + βu
(9)

Then, the corresponding prediction matrix ŷ ∈ R|V| can be
generated by:

ŷ = (Hu
f ⊕Hu

l )(M⊕E)> (10)

where E = α
α+β . And we use the cross-entropy loss to ap-

proximate the ground truth y:

LRec = −
|V|∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) (11)

At last, the final objective function is:

L = LRec + λLl (12)

where λ is a hyperparameter.

5 Experiments
In this section, we conduct experiments with the aim of an-
swering the following questions: Q1: How do our models
SR-PLR perform compared with other baselines? Q2: What
is the influence of key components of SR-PLR? Q3: Whether
is SR-PLR sensitive to the hyperparameters? Q4: How is the
robustness of SR-PLR?

5.1 Experimental Settings
Dataset
Experiments are conducted on three publicly available
datasets. The statistics of each dataset are given in Table 1.

• Amazon [He and McAuley, 2016]: Amazon Sports and
Outdoors and Amazon Toys and Games are two sub-
categories datasets crawled from Amazon, denoted as
Sports and Toys.

• Yelp: Yelp is one of the most widely used datasets for
business recommendation.

Following previous works [Kang and McAuley, 2018;
Tang and Wang, 2018], we use the ‘5-core’ version for all
datasets and adopt the leave-one-out method to split these
three datasets.

Evaluation Metrics
The widely used Normalized Discounted Cumulative Gain at
rank K (NDCG@K) and Hit ratio at rank K (Hit@K) are
used as evaluation metrics in our experiments, and we choose
K from 5, 10. As recommended by [Krichene and Rendle,

2020], we adopt all-rank evaluation scores throughout the en-
tire item set to ensure that the evaluation process is unbiased.
As [Shi et al., 2020; Chen et al., 2021] are evaluated with
sampled metrics in the original paper, we compare SR-PLR
with our re-implemented version.

Baseline Methods
Baselines used to compare with our models can be catego-
rized into two groups.

DNN based models: For this group, we compare the Re-
current Neural Network (RNN), Convolutional Neural Net-
work (CNN), self-attention based models, and newly released
contrastive learning based model. They not only act roles as
baselines, but also as the backbone of SR-PLR to demonstrate
the effectiveness of combining logical reasoning.

• GRU4Rec [Hidasi et al., 2016]: a method utilizing GRU
to model user sequential behaviors as a strict order,

• Caser [Tang and Wang, 2018]: a method using both
horizontal and vertical convolution for sequential rec-
ommendation,

• SASRec [Kang and McAuley, 2018]: a method based
on the self-attention mechanism,

• DuoRec [Qiu et al., 2022]: a method developing a posi-
tive sampling strategy and using contrastive learning for
SR with a model-level augmentation.

Neural-symbolic models: For this group, we compare
our framework with some neural-symbolic recommendation
methods. As mentioned in [Chen et al., 2021], there are two
different versions that base on implicit feedback NCR-I and
explicit feedback NCR-E. Since SR-PLR is implicit feedback
based, for fair comparisons, we use the implicit feedback ver-
sions here for these two neural-symbolic baselines.

• LINN [Shi et al., 2020]: a neural collaborative reason-
ing based recommendation method,

• NCR-I [Chen et al., 2021]: a personalized method based
on LINN.

Implementation Details
We run all methods in PyTorch [Paszke et al., 2017] with
Adam [Kingma and Ba, 2015] optimizer on an NVIDIA
Geforce 3070Ti GPU, and all these models are implemented
based on RecBole [Zhao et al., 2021b]. The batch size and the
dimension of embeddings d are set to 2048 and 64 in our ex-
periments. The max sequential length for all baselines is set
as 50. We train all models 50 epochs. In the experiment, we
keep all the hyperparameters of backbone models in RecBole
unchanged and stack our logic network on them. SR-PLR is
trained with a learning rate of 0.002. For the logic network,
we set the λ in Eq. (12) as a hyperparameter and select it from
[0, 1] with step 0.1. For the negative item number in Eq. (6),
we choose it from 1 to 10.

5.2 Overall Performance (Q1)
We report the experimental results of different methods in Ta-
ble 2. Note that ‘XX L’ means the SR-PLR method that uses
‘XX’ as the backbone. Where the ‘N’ is short for NDCG and
the numbers in bold indicate the better results that are gener-
ated by the same feature encoder. As we can see, the methods



Models
Amazon Sports Amazon Toys Yelp

HIT@5 HIT@10 N@5 N@10 HIT@5 HIT@10 N@5 N@10 HIT@5 HIT@10 N@5 N@10

RNN
GRU4Rec 0.0186 0.0300 0.0121 0.0158 0.0352 0.0519 0.0240 0.0294 0.0217 0.0360 0.0144 0.0189

GRU4Rec L 0.0225 0.0353 0.0141 0.0182 0.0387 0.0557 0.0268 0.0323 0.0249 0.0433 0.0160 0.0220
Impro. 20.97% 17.67% 16.53% 15.19% 9.94% 7.32% 11.67 % 9.86% 14.74% 23.06% 11.11% 16.40%

CNN
Caser 0.0141 0.0226 0.0087 0.0115 0.0183 0.0302 0.0113 0.0151 0.0231 0.0351 0.0164 0.0202

Caser L 0.0173 0.0283 0.0109 0.0144 0.0228 0.0390 0.0132 0.0185 0.0260 0.0372 0.0185 0.0221
Impro. 22.70% 25.22% 25.29% 25.27% 24.59% 22.56% 16.81% 22.52 % 12.55% 5.98% 12.80% 9.41%

Attention
SASRec 0.0317 0.0484 0.0172 0.0226 0.0630 0.0909 0.0354 0.0444 0.0422 0.0595 0.0322 0.0377

SASRec L 0.0332 0.0515 0.0192 0.0252 0.0632 0.0919 0.0359 0.0452 0.0441 0.0627 0.0326 0.0386
Impro. 4.73% 6.40% 11.63% 11.50% 0.32 % 1.10% 1.41% 1.80% 4.50% 5.38% 1.24% 2.39%

DuoRec
DuoRec 0.0328 0.0505 0.0192 0.0249 0.0648 0.0929 0.0388 0.0479 0.0434 0.0618 0.0319 0.0378

DuoRec L 0.0342 0.0522 0.0200 0.0257 0.0652 0.0946 0.0388 0.0484 0.0441 0.0624 0.0321 0.0380
Impro. 4.27% 3.37% 4.17% 3.21% 0.62% 1.83% 0% 1.04% 1.61% 0.97% 0.63% 0.53%

Logic
LINN 0.0151 0.0256 0.0101 0.0132 0.0196 0.0320 0.0133 0.0172 0.0215 0.0355 0.0146 0.0192
NCR-I 0.0162 0.0263 0.0110 0.0146 0.0201 0.0322 0.0135 0.0176 0.0204 0.0354 0.0146 0.0191

Table 2: Overall performance on all datasets. ‘XX L’ means the SR-PLR method that uses ‘XX’ as the backbone and the numbers in
bold indicate the better results that are generated by the same feature encoder. ‘N’ denotes ‘NDCG’ and ‘Impro.’ denotes performance
improvement compared with backbones.
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Figure 2: Ablation study of SR-PLR on three datasets.

combining logical reasoning achieve better performance than
other comparative models. Besides, there are more findings
in these comparative experiments.

Firstly, SASRec achieves better performance than
GRU4Rec and Caser for both NDCG and Hit on all three
datasets. It shows that modeling the importance of different
interactions is highly effective for describing users’ prefer-
ences. The main reason is that the items in the sequences con-
tribute differently to final results, e.g., the laptop makes more
contributions than clothes in buying the keyboard, which is
also why the attention mechanism is used in our probabilistic
operator. Secondly, DuoRec performs better than SASRec in
most cases, suggesting that pushing the positive views closer
and pulling negative pairs away by contrastive learning are
meaningful for getting better representations. Thirdly, both
neural-symbolic models get similar results with GRU4Rec
(consistent with the results reported in [Shi et al., 2020;
Chen et al., 2021]). They also leverage deep neural networks
to conduct logical reasoning, but only considering the logical
equations of items may be not adequate for describing the
complex relationship among interactions.

Finally, SR-PLR achieves performance improvement
based on four types of feature encoders and performs best
on three datasets. We contribute the improvement to the fol-

lowing aspects: (1) combining deep learning and symbolic
learning in a dual feature-logic network, and (2) modeling
users’ dynamic preferences with a probabilistic method. As
self-attention based SASRec performs better than RNN and
CNN, meanwhile DuoRec is also the development of SAS-
Rec, we pay more attention to SASRec and perform more
detailed experiments based on SASRec L.

5.3 Ablation Study (Q2)
In this section, we conduct three ablation studies on all three
datasets. We are going to examine the effectiveness of main
three components, which are the attention mechanism in the
probabilistic conjunction operator, the probabilistic negation
operator and the feature network. Hence, three variants
(which are named ‘w/o att’, ‘w/o neg oper’ and ‘w/o feat’)
are designed to compare against SASRec L, and the results
are shown in Figure 2. The details of these variants are as
follows:

w/o att. We first evaluate the necessity of item-level at-
tention in our probabilistic conjunction operator. The vari-
ant ’w/o att’ means to compute sequence distribution by ag-
gregating the hidden states via average pooling operations
in Eq. (5). From Figure 2, we can see that our SASRec L
far outperforms its variant without the attention operation on
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Figure 3: Sensitivity of λ on three datasets.
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Figure 4: Sensitivity of negative item number on three datasets.

three datasets. It indicates that using a fixed weight matrix
will be a bottleneck to modeling the dynamic evolving tastes
of users. Our attention based logical operation can adaptively
measure the importance score for each item, which helps to
improve the model performance.

w/o neg oper. The negation operator is also an essential
part of SR-PLR. For w/o neg oper, we use positive items
and conjunction operator to calculate the distribution of se-
quences, that is using vu = C({v1,v2, · · · ,vm}) in Eq. (6).
From Figure 2, it can be seen that the recommendation perfor-
mance can be booted with the help of operator N . Note that
there is nearly no work to consider to conclude negative items
during representing the interaction sequences except neural-
symbolic based models. Our experiments indicate that the
negative operator is vital to make logical reasoning complete,
and using the unclicked items with the negative operator in
symbolic learning may be another way to leverage unlabeled
data, which may be useful for the semi-supervised recom-
mendation.

w/o feat. We also evaluate the effectiveness of the feature
network. For w/o feat, we alternatively make the prediction
by using ŷ = Hu

l E
> for Eq. (10). As shown in Figure 2,

only using the probabilistic logic network will result in a per-
formance drop, which indicates the importance of combing
feature learning with symbolic learning, and the effectiveness
of probabilistic logic network in boosting feature learning.

5.4 Hyper-parameter Sensitivity (Q3)
In this section, we are going to investigate how the perfor-
mance varied with the changes of λ and the sampled negative
item number. In experiments, we vary one of these two hy-
perparameters and keep others unchanged to investigate the

r 0.1 0.2 0.3 0.4 0.5

Sports

H@5 SASRec 0.0296 0.0292 0.0241 0.0214 0.0197
SASRec L 0.0334 0.0310 0.0262 0.0215 0.0198

H@10 SASRec 0.0473 0.0462 0.0402 0.0361 0.0327
SASRec L 0.0499 0.0484 0.0417 0.0357 0.0320

N@5 SASRec 0.0162 0.0158 0.0135 0.0122 0.0118
SASRec L 0.0189 0.0185 0.0160 0.0136 0.0124

N@10 SASRec 0.0219 0.0213 0.0187 0.0169 0.0160
SASRec L 0.0242 0.0241 0.0210 0.0182 0.0163

Toys

H@5 SASRec 0.0582 0.0581 0.0504 0.0457 0.0384
SASRec L 0.0626 0.0600 0.0582 0.0551 0.0446

H@10 SASRec 0.0880 0.0872 0.0779 0.0700 0.0594
SASRec L 0.0890 0.0888 0.0879 0.0821 0.0733

N@5 SASRec 0.0329 0.0327 0.0285 0.0265 0.0228
SASRec L 0.0359 0.0343 0.0337 0.0324 0.0271

N@10 SASRec 0.0426 0.0421 0.0374 0.0343 0.0295
SASRec L 0.0444 0.0436 0.0433 0.0411 0.0363

Table 3: Robustness analysis on Sports and Toys.

influence of λ and the negative item number.
Sensitivity of λ. For λ, we conduct the experiment in the

range from 0 to 1 for all three datasets. The experimental
results are shown in Figure 3. In this figure, we compare
SASRec L with SASRec under different λ. It can be seen
that adding a logical regularizer, i.e., the Ll in Eq. (8), to op-
timize the logic network is helpful for the recommendation
performance. Essentially, it acts as an auxiliary task to push
the sequences’ distribution close to the positive items’ distri-
butions and far away from the negative ones. In addition, it
matters to carefully find a suitable value for each dataset, and
values around 0.5 are recommended.

Sensitivity of sampled negative item number. For the
negative item used for operatorN , we choose it ranges from 1
to 10, and the experimental results are indicated in Figure 4. It
can be seen that, in most cases, introducing negative items is
effective for logical reasoning, especially in Sports and Yelp.
As we use implicit feedback in SR-PLR, the sampled negative
items may be not truly disliked by the user, hence the num-
ber of negative items is set relatively small during training to
maintain the semantic of sequence.

5.5 Robustness Analysis (Q4)

In the logic network, we endow SR-PLR with the capabil-
ity of modeling uncertainty by using the Beta distribution to
represent the items. To verify this point, we randomly mask
some items in the sequence with probability r during train-
ing and evaluate the performance of models in the original
test dataset. Ideally, the item distribution contains more in-
formation than the static embedding, which makes SR-PLR
could maintain its superiority with distorted sequences. As
the results in Table 3 illustrated, though both models’ perfor-
mances slowly drop, SASRec L still beats SASRec in most
cases when r varies from 0.1 to 0.5 in two datasets, which
indicates SR-PLR is more robust by using the probabilistic
method.
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6 Conclusion
In this paper, we proposed a general framework named SR-
PLR to combine deep learning with symbolic learning via a
Beta embedding method. Our main idea is two-fold: One
is to disentangle items’ embeddings and endow the basic
DNN based sequential recommendation with cognitive ca-
pability; Another is to model the uncertainty and dynamic
tastes of users. Therefore, we designed a dual feature-logic
network and applied probabilistic logical operators on the
items’ Beta embeddings. Experiments on three real-world
datasets showed that SR-PLR exhibits significant improve-
ment against traditional baselines and neural-symbolic mod-
els. Our future work will consider modeling content informa-
tion and knowledge graph with more interpretable and trans-
ferable logic neural networks in sequential recommendation,
and that may lead this framework to be more transparent and
achieve significant performance.
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